Tag: Cornell University

9 New Clean Energy Technologies Chosen to Power the Next Generation

Meet the 2017 NEXUS-NY Research Teams

NEXUS-NY’s proof-of-concept accelerator is ready for another year of helping to catalyze the commercialization of research-derived clean energy technologies. After months of meetings at colleges and universities across NYS, the NEXUS-NY team has selected 9 rockstar clean energy innovations that have major potential to power innovation, and fuel the future.

Here’s your first look at the promising early-stage clean energy technologies NEXUS-NY will invest in, and mentor in 2017.

Active Energy Storage (Cornell) – Thermomechanical energy storage
AES technology intelligently manages different sources of thermal energy to inexpensively store electricity. This helps incorporate renewable resources into the power grid. Diurnal temperature swings can further enhance storage efficiency when storing electricity as thermal energy. AES technology represents a step forward over conventional pumped-heat electricity storage units.

Levon Atoyan | NEXUS-NY ResearcherEntrepreneur Lead: Levon Atoyan
Graduate Research Assistant and PhD candidate of Electrical, Computer Engineering at Cornell University. He is a participant in Technology Entrepreneurship at Cornell. Levon received a Bachelor of Engineering from McGill University. Publications include: Helical Plasma Striations in Liners in the Presence of an External Axial Magnetic Field and Early time studies of cylindrical liner implosions at 1 MA on COBRA.

Mitchell Ishmael | 2017 NEXUS-NY ResearcherTechnical Lead: Mitchell Ishmael
Tester Lab Research Assistant and PhD candidate of Materials Sciences & Engineering, Thermodynamics & Energy Storage at Cornell University. Mitchell is a recipient of a Commercialization Fellowship. He received a Bachelor of Engineering from Rose-Hulman Institute of Technology in Chemical Engineering. He’s interested in understanding heat capacity of fluid mixtures under supercritical conditions.


Alta Films (formerly CQuest Partners LLC) (Clarkson) – Carbon nanosheets for energy storage
Alta Films is commercializing the next-generation, renewable energy storage technology for supercapacitors, lithium-ion batteries and beyond. Alta Films holds several of Dr. Mitlin’s patents related to producing a unique graphene-like carbon nanosheet material from low cost agricultural products.

David Hessler | 2017 NEXUS-NY ResearcherEntrepreneur Lead: David Hessler
Numerous consulting assignments including Innovation Advisor, and EIR with the NYS Energy Research & Development Authority (NYSERDA); Business Advisor with MicroGen Systems; Board Member with the Reh Center for Entrepreneurship at Clarkson University; and Advisory Board Member with the iCLEAN Incubator. David received an MBA and MSE from the University of Michigan, and a BSME from Clarkson University.

Dr, David Mitlin | 2017 NEXUS-NY ResearcherTechnical Lead: Dr. David Mitlin
Professor and GE Chair in Oil and Gas Systems at Clarkson University jointly in the Departments of Chemical/Biomolecular and Mechanical Engineering. He has published over 130 peer-reviewed journal articles and presented over 80 keynote talks. David holds 3 U.S. patents, is an Editor for the Journal of Materials Science and serves on the Board of Review for Metallurgical and Materials Transactions. PhD from Berkeley.

FirePower (Syracuse) – Flame-assisted fuel cells for micro-CHP
FirePower seeks to create cleaner combustion through the combined use of fuel cell and combustion theory and technology by reducing the formation of nitrogen oxides (NOx) in combustion processes. The concept utilizes a two-stage combustor, also known as a rich-burn, quick-mix, lean-burn or RQL combustor, with a fuel cell integrated between the fuel-rich and fuel-lean combustion zones. This flame-assisted fuel cell generates electrochemical power at high efficiency, as well as heat for a range of applications including combined cycles, space heating, and jet engines.

Ryan Milcarek | 2017 NEXUS-NY ResearcherEntrepreneur Lead: Ryan Milcarek
Lab Manager at the Combustion and Energy Research Laboratory, and PhD candidate of Mechanical and Aerospace Engineering Syracuse University. Ryan earned a Graduate Research Fellowship from the National Science Foundation and an ASHRAE Graduate Grant-In-Aid, Life Member Club designation. His various publications include Micro-tubular Flame-assisted Fuel Cell Stacks.

Dr. Jeongmin Ahn | 2017 NEXUS-NY ResearcherTechnical Lead: Dr. Jeongmin Ahn
Associate Professor of Mechanical and Aerospace Engineering at Syracuse University, and affiliated with the Combustion and Energy Research Laboratory (COMER). Jeongmin’s current research includes Solid Oxide Fuel Cells (SOFCs). He was elected as Fellow of ASME, and received the Sustainable Aviation Research Society Science Award. He has nearly 200 publications.


LuX (SUNY Poly) – Thin film crystallization for PV
LuX is developing and commercializing technology to provide highly crystalline, roll-to-roll semiconductor films for photovoltaic and LED industries. This exciting platform technology is adaptable to a range of valuable materials and will disrupt the typical tradeoffs of cost and quality for high throughput manufacturing.

Graeme Housser | 2017 NEXUS-NY ResearcherEntrepreneur Lead: Graeme Housser
PhD candidate at SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering. Graeme is also a Graduate Student Intern at U.S. Photovoltaic Manufacturing Consortium (PVMC). Prior to this, he was a Site Engineer at Suncor Energy. His several publications include Demonstration of PV Modules with Lightweight Mounting Systems on Commercial Rooftops.


Technical Lead: Shane McMahon
Phd Candidate and Research Assistant at SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering. Shane received the Presidential Scholar Honorary Alumni Speaker award at Siena College (2016) and a $500,000 NYSERDA Bench to Prototype Grant (2015). Shane’s publications include Textured (111) Crystalline Silicon Thin Film Growth on Flexible Glass by E-beam Evaporation.


MicroEra Power (RIT Venture Creations) – Combined SOFC/IC engine system for distributed power generation
MicroEra Power is developing a highly efficient Enhanced Generator System, combining a natural gas engine and solid oxide fuel cell (SOFC). MicroEra Power envisions an energy management platform to provide backup power generation, peak-shaving, Demand Response, and the efficiency benefits of combined heat and power (CHP), and combined heat and cooling power (CHCP).

Eleanor Rusling | 2017 NEXUS-NY ResearchersEntrepreneur Lead: Eleanor “Ellie” Rusling
CEO of MicroEra Power, housed in RIT’s Venture Creations Incubator. Board Member of Highland Hospital Foundation, Secretary of AHEAD Energy, 501c3 and Exec. Director of their Clean Energy Commercialization Center. As an experienced entrepreneur, Ellie has skills in technologies to market, grant writing, and investor relations. BA from Smith College and MS from the University of Rochester.

James Grieve | 2017 NEXUS-NY ResearcherTechnical Lead: M. James Grieve
CTO of MicroEra Power and Chairman of AHEAD Energy, 501c3. He is also a Board Member of the NH3 Fuel Association. James was a Chief Scientist for Delphi Corporation, and a Powertrain Systems Engineer for General Motors. He has 30 years of automotive engineering experience with emission controls, engine management systems, solid oxide fuel cells (SOFC), hybrid vehicles and alternative fuels. James received his MBA from IESE Business School. He is named on over 40 patents.


Printed Solar (RIT) – Solution Processed Solar Cells
Printed Solar is developing a fully solution processed photovoltaic device that can be scalably manufactured using roll-to-roll techniques. Their solar cells outperform silicon in low light, enabling them to provide sufficient energy for low power electronic devices in ambient conditions.

Dmitry Liapitch | 2017 NEXUS-NY ResearcherEntrepreneur Lead: Dmitry Liapitch
Dmitry received a Master of Engineering from the Rochester Institute of Technology. He is now pursuing a Master of Science from the Golisano Institute for Sustainability. Dmitry is also a professional Physics tutor and a former Research Fellow with the National Wildlife Federation. He was a finalist in RIT’s Tiger Tank in 2016 for his proposal on WoW Energy Systems.


James Sinka | 2017 NEXUS-NY ResearcherTechnical Lead: James Sinka
James is a materials scientist and entrepreneur specializing in perovskite photovoltaics with deep interests in sensing technology. He is pursuing a Bachelor’s Degree in Chemistry from the Rochester Institute of Technology. Projects include The Characterization of Novel Donor Materials for OPV by Cyclic Voltammetry, which reveals the electric potentials at which an analyte is oxidized and reduced.


SelfArray (RPI) – Directed self-assembly tech for LED & PV
SelfArray is an SBIR Phase I startup spun our of research conducted within LESA at RPI. SelfArray’s directed self-assembly (DSA) manufacturing technology uses magnetic levitation and vibration to rapidly arrange massive numbers of LED chips into a pixel-array for display applications. The company’s DSA technology differs fundamentally from both the widely accepted pick-and-place and the emerging transfer printing/stamping manufacturing methods, overcoming many issues associated with those technologies. DSA’s approach enables scalable, fast, and accurate self-assembly of micro-scale LEDs arrays at low capital and labor cost for the manufacturing of energy efficient LED direct view displays.

Mark Durniak | 2017 NEXUS-NY ResearcherEntrepreneur Lead: Dr. Mark T. Durniak
PhD in Materials Science and Engineering at RPI. As a Sandia National Laboratory Excellence in Engineering Research Fellow at RPI, Mark was first to grow and achieve green luminescence from cubic GaN/GaInN. Published in Compound Semiconductor Magazine and Advanced Electronic Materials. He now focuses on characterizing magnetic directed-self-assembly of mm-scale LED chips for display and lighting applications.

Clinton Ballinger | 2017 NEXUS-NY ResearcherTechnical Lead: Clinton Ballinger
Clint is an Executive Entrepreneur in Residence at Rensselaer Polytechnic Institute where he teaches and leads an NSF-funded I-Site program. He’s also an EIR with IgniteU NY, Strategic Advisor for Buzz Media Solutions and CEO of Evident Thermoelectrics. Prior to this, Clint was an Adjunct Professor at RPI and a Senior Scientist at Lockheed Martin. He received a PhD in Nuclear Engineering from the University of Michigan.

Suny Clean Water (UB) – Solar powered water purification
Suny Clean Water has developed an inexpensive solar sill that uses sunlight to purify dirty water up to four times faster than current commercial versions. Research shows this process is 88% efficient at channeling the energy in sunlight into evaporating water. The technology will allow people to generate their own drinking water much like they generate their own power using rooftop solar panels.

Matthew Singer | 2017 NEXUS-NY ResearcherEntrepreneur Lead: Matthew Singer
Matthew is pursuing a PhD in Electrical Engineering from the University at Buffalo Graduate School. He has held engineering internships at Siemens and Crestron Electronics. Matt has also participated in GRoW Home at UB, which is part of the U.S. Department of Energy Solar Decathlon, an international competition with the goal of educating the public about energy-saving residential designs.

Chenyu Li | 2017 NEXUS-NY ResearcherTechnical Lead: Chenyu Li
Former Research Assistant with the Nano-optics and Biophotonics Lab at University of Buffalo and the Quantum-Dot Materials and Devices Research Group at Tianjin University. Master of Science in Electrical Engineering from the State University of New York at Buffalo. Chenyu’s projects include fabricating plasmonic super solar light absorber, building surface plasmon resonance detector and fabricating quantum dots anode.


Tacus Technologies (Cornell) – Energy harvesting solutions
Tacus Technologies has developed a piezoelectrically powered RF Transponder that leverages a 3D-printed plastic structure to achieve low frequency sensitivity and a broadband response. By using a mechanical switching mechanism for transmission, Tacus has eliminated the use of traditional CMOS IC’s and achieved a zero-power sleep state. Tacus seeks to commercialize the technology in remote areas where there is no power readily available or in environments where replacing batteries for wireless nodes is too costly.

Entrepreneur Lead: Donald McCullough
Former Entrepreneurial Lead with the NYCRIN I-Corps Regional Cohort. Don graduated from the ILR School at Cornell University in 2015 and Wake Forest University School of Business in 2016 with a MA in Management. While at Wake Forest, he served as a graduate consultant for Cigna Healthcare and Vulcan Materials. Don was also a Student Ambassador, and a member of the Beta Gamma Sigma International Honor Society.

Sahil Gupta | 2017 NEXUS-NY ResearcherTechnical Lead: Sahil Gupta
Former Entrepreneurial Lead with NYCRIN I-Corps Region Cohort, Graduate Research Assistant with SonicMEMS Laboratory at Cornell, and Engineer for Boeing. Sahil received a Master of Engineering from Cornell, and placed first in the Hilton Head MEMS Shark-Pup Tank Entrepreneurship Competition. Publications include Vibration powered RF-Transponder for Sensing Low Frequency Motion Events.


In Phase I of the NEXUS-NY accelerator, each team will now work with world class mentors and industry experts to identify market opportunities for their clean energy technologies, including developing comprehensive business plans and conducting customer discovery.

We’re excited to continue assisting these entrepreneurs and scientists propel their amazing technologies forward. Join us by signing up for NEXUS-NY newsletters. We’ll release updates on the teams, and more details on events leading up to Demo Days in Rochester, NY and New York City.

NEXUS-NY 2016 Demo Day

7 Clean Energy Startups Changing the World

To date, NEXUS-NY has helped launch 15 startup companies. Eight graduates have gone on to raise more than $6.5MM, and four have generated initial customer revenue.

Interested commercializing your clean energy technology? Apply to NEXUS-NY.

Now meet the graduates of the 2016 Cohort of NEXUS-NY. Each presented at our annual Demo Day in Rochester, NY after completed the NEXUS-NY clean energy seed accelerator program.

Phase Innovations (SUNY Alfred)
Phase Innovations is developing a low-cost, advanced air conditioning system without chemical refrigerants, and which uses less energy than conventional systems.

Ducted Turbines International (Clarkson University)
DTI is a wind turbine company working to provide the lowest cost per kWh in the small turbine market (<10kW).

The Rensselaer Polytechnic Institute is developing modular, switchable heating and cooling systems that reduce building energy consumption, while increasing occupant comfort.

Dimensional Energy (Cornell University)
Dimensional Energy is breaking new ground in artificial photosynthesis by converting waste carbon dioxide into green fuels using only sunlight as an energy source.

NanoHydro (SUNY Buffalo)
NanoHydro has developed a novel, proprietary nanomaterial capable of generating hydrogen gas from water, on demand and at room temperature.

BioEnergySP is working to commercialize its patent pending industrial equipment for wastewater treatment. Its Electroactive Attached Growth (EAG) modules save energy and expand treatment capacity for municipal and energy customers.

Cellec Technologies (RIT)
Cellec Technologies is using patented carbon nanotube (CNT) technologies to increase the performance of high-end lithium ion batteries by 40% for defense and intelligence applications.

NEXUS-NY is a clean energy seed accelerator. Each year we provide financial, business and educational support to around 10 entrepreneurial teams, which are selected through a competitive application process. Program participants are eligible to receive $50,000 or more of equity-free financial support, plus additional service from NEXUS-NY mentors and partner organizations. Our entrepreneurs come from research universities and the general community, and share several common traits:

  • They are passionate about their technology and want to start a great company
  • They want to solve big problems for real customers
  • They recognize the need to demonstrate their technology and business model though meaningful proof-of-concept prototypes and customer interactions

NEXUS-NY provides a structured customer commercialization process organized around answering three fundamental questions:

  • What is the best commercialization pathway for a given technology? Could it be through a startup?
  • Does technology work in a way that’s relevant to intended customers?
  • Will a customer actively engage to help validate the technology and business model?

The most promising graduating companies are eligible to receive follow on equity investments. NEXUS-NY is a program of High Tech Rochester (HTR) and is funded largely through a proof-of-concept center grant from NYSERDA.

Stay on the pulse of clean energy news, deals and events. Sign up for NEXUS-NY newsletters.

HTR Pre-Seed Workshop, Clean Energy Ideas Wanted!

Thinking about applying to NEXUS-NY? Get a head start by joining HTR’s Pre-Seed Workshop

Are you ready for innovation? NEXUS-NY isn’t holding back the “energy” this Fall, with Demo Day 2016 scheduled for October 5, Cohort 4 applications opening on October 18 and the next High Tech Rochester Pre-Seed Workshop kicking off on October 27!

Apply to HTR Pre-Seed WorkshopLimited to ten teams, the HTR Pre-Seed Workshop is your chance to collaborate with top inventors, entrepreneurs and tech pros from across New York State, giving you the resources needed to turn your idea into a business.

“As a result of our Pre-Seed Workshops, over 100 new companies in NYS have been formed, and they’ve secured over $50 million in the past five years,” says HTR Technology Commercialization Manager Mike Riedlinger. “What I believe has made the program so successful is the team of people we assemble around each idea champion.”

Designed as a structured two-day program, each inventor (or “idea champion” as Mike likes to say) is paired with industry experts, including IP attorneys and financial specialists. Students from the University of Rochester round out the team by assisting with research, conducting background on the technology and gathering industry information. Teams also receive over $10,000 in support services and market research reports to help make their ideas take flight.

“The workshop is ideal for people who have a clean energy concept or who have worked in the lab to build an early prototype that might be commercialized,” Riedlinger says. “By running through important business model canvas elements, and surrounding inventors with a core team of experts, we’ve seen ideas turn into products, licensed someplace else or created into a service that makes a product, he added.

Riedlinger says companies that have participated in the Pre-Seed Workshop come from across New York State, referencing Ecolectro in Ithaca, NY as a great success story.

EcolectroHTR Pre-Seed Workshop is a clean energy startup spun from Cornell University. The company is researching ways to revolutionize how we power the nation by developing structurally robust and highly conductive polymer membranes for a range of applications, including fuel cells and electrolyzers. Before graduating from the NEXUS-NY Clean Energy Seed Accelerator, Ecolectro Cofounder and CEO Dr. Gabriel Rodríguez-Calero began his path to commercialization as a participant of the HTR Pre-Seed Workshop.

“I heard about the HTR Pre-Seed Workshop through Susi Varvayanis of the Cornell BEST program. I was looking for some help from people who had started a business before. I had a rough idea of what I wanted to achieve, but I needed guidance to turn my idea into something more concrete,” says Rodríguez-Calero.

When he entered the Pre-Seed Workshop, Gabriel and his cofounders were surrounded by subject matter experts including Doug Buerkle, Executive Director of the NEXUS-NY and David Wetter, Cofounder of American Fuel Cells, while Susi participated as the team coach.

“It was a varied and diverse group of individuals with a lot of expertise. I was able to float my ideas by them, and with their help refine the ideas. This is exactly what I needed – a channel of communications,” explains Rodríguez-Calero. “It was an excellent way to get familiar with the business model canvas, Ecolectro’s potential customer base and define the business, all within a very concise two-day program.”

Gabriel says that after coming out of the HTR Pre-Seed Workshop he had a refined idea and understood better the problem he was trying to solve with his solution, which were much different than when he started. “Even if you find out your idea isn’t worth pursuing in a commercial enterprise, the networking and the learning experience is completely valuable. I highly recommend it.”

After completing the HTR Pre-Seed Workshop, Ecolectro took their refined solution and applied for the NEXUS-NY accelerator.

“During the Pre-Seed Workshop we were able to see how Gabriel engaged with his team members, and it was exciting to witness his interest in moving the technology ahead,” says Doug Buerkle, NEXUS-NY Executive Director. “So when he applied for NEXUS-NY, we already had a clear understanding of the technology and his commitment to commercializing it, which are two main factors in our competitive application process.”

Rodríguez-Calero says that becoming familiar with the terminology of the lean startup principles and business model canvas helped him advance in the NEXUS-NY accelerator because it wasn’t his first time hearing and practicing the concepts.

And it’s not only NEXUS-NY who will be keeping an eye out for innovations being launched out of the Pre-Seed Workshop. Each cohort ends with the investor delivering a 10-minute presentation to a panel of successful entrepreneurs, angel investors and early-stage venture funds.

“Many inventors move on to successfully receive SBIR grants or seed stage funding to form businesses based on their efforts from the Pre-Seed Workshop,” says Riedlinger. “Others realize their idea isn’t a fit and pivot to create something new, moving onto great success like Ecolectro.”

Now working out of Cornell’s Kevin M. McGovern Family Center for Venture Development in the Life Sciences, Rodríguez-Calero says he’s in position to raise his first round of investment, and the startup is actively seeking investors. Ecolectro was also chosen as a semifinalist for the 76West Clean Energy Competition, and was recently awarded a competitive NSF SBIR phase 1 grant. Through the grant’s funding, Ecolectro was able to increase the scale of polymer manufacturing by 15 times. The team finished this project on July 31, and have already applied for phase two of the grant. If they receive this additional support, Ecolectro will continue to develop their manufacturing process to make their materials at scale.

“Also exciting is that we’re in active conversations with potential customers to do joint work together. The partnership will entail testing our materials in their products, providing further market validation,” says Rodríguez-Calero.

Now’s your chance to get in on the action! If you have a clean energy idea to test and evolve, apply for the HTR Pre-Seed Workshop. Application deadline is October 14.

NEXUS-NY 2016 Teams Ready for Demo Day

NEXUS-NY is a clean energy seed accelerator. Each year the program provides financial, business and education support to entrepreneurial teams selected through a competitive application process.

Participants primarily come from NY research universities and share several common traits:

  1. They’re passionate about their research and want to start a great company
  2. They want to solve big problems for real customers
  3. They recognize the need to demonstrate their technology and business model through meaningful proof-of-concept prototype and customer interactions

Innovation Together - Proof of Concept CentersVIDEO: Innovating Together – Proof of Concept Centers

Mae-ling Lokko, founder of AMBIS Technologies and NEXUS-NY graduate featured by NY American Science and NYSERDA on the power mentorship through the NEXUS-NY’s proof-of-concept center.

“Our program strives to determine if someone should start a company, see if the technology actually works, and gain 3rd party validation of the technology and business model,” explained NEXUS-NY Executive Director Doug Buerkle. “In prior cohorts, many companies fell short of validation until well after the program ended. But for the 2016 teams, validation is a strong theme. Four of our graduating companies are, or will shortly be, conducting some type of customer demonstration study. This process validates the technology in a relevant environment and sends a strong signal to the rest of the market.”

Excited to showcase the 2016 participants in the NEXUS-NY program on Demo Day, here’s a racap of where the seven teams stand to date, and “Doug’s Take” on each team pitching on October 5 at the Rochester Public Market. Join us in celebrating their groundbreaking achievements! 

BioEnergySP – Saving Energy for Wastewater Treatment

BioEnergySP is a newly incorporated clean energy company that has invented novel 4th generation compartment free Microbial Fuel Cells. This patent pending industrial equipment Electroactive Attached Growth (EAG) technology saves energy for municipal and industrial customers, allowing facilities to significantly reduce operating expenses or to expand with minimal capital outlays.  Since the start of Phase 2 of the NEXUS-NY program, the leaders of BioEnergySP are excited to have built their first Pilot Scale prototype, which will be deployed in October in a New York State Wastewater Treatment Plant.

“This is an exciting milestone for our company that could not have been achieved without the mentorship and help of the NEXUS-NY program,” said Entrepreneurial Lead Adrian Cosma. “The pilot this fall will allow us to validate our technology and will get us one step closer to commercializing our technology. Recently we validated our technology in the lab, and there is the opportunity to offer tremendous value for our customers while having a positive effect on the environment.”

Doug’s Take: “Another great success story. In addition to being a 76West semifinalist, BioEnergySP has established a partnership with a leading engineering and construction firm that is going to build their pilot.  Their first system will be deployed at a New York wastewater treatment facility in the very near future.”

Cellec Technologies (RIT) – High-end Lithium Ion Batteries

Cellec Technologies is using patented technologies to improve the performance of high-end lithium ion batteries for small satellites, remote sensing and UAV applications in the defense and intelligence communities. The team is primarily composed of researchers from Rochester Institute of Technology. The Cellec team successfully exited phase 1 of the NEXUS-NY program in April, 2016 and has since been working on phase 2 deliverables. The team is working with several potential customers and expects to have its first orders shortly.

“Our efforts have primarily focused on improving our battery cell prototypes to meet customer deliverables. We have developed initial pouch cell batteries that show a 40% performance improvement over commercially available alternatives; while searching for ways to reduce the total cost of the battery cells without sacrificing performance,” explained Entrepreneurial Lead Brad Sparks. “Our multiple patents provide intellectual property protection and we have worked with the NYS Science + Technology Law Center to map the patent landscape.”

Doug’s Take: “RIT has built a functional prototype and could be in position to announce their first customer at Demo Day. This customer will deploy Cellec’s technology in a very unique and exciting application.  While many advanced battery companies are promising high energy density, these guys have demonstrated performance in prototypes which have been cycled hundreds of times.”

Dimensional Energy (Cornell) – Transformative CO2 Conversion Technologies

Growing concerns about rising CO2 emissions and related climate change have added urgency to the endeavor of carbon capture and conversion. To do so, Dimensional Energy focuses on creating artificial photosynthetic systems for hydrocarbon production. The technology at the heart of this clean energy startup integrates advanced light harvesting technology with novel nanostructured photocatalysts. While the prospect of mimicking natural photosynthesis to convert sunlight and CO2 to fuels has intrigued scientists and engineers for years, Dimensional Energy is exploring recent breakthroughs in catalyst development as an opportunity to develop CO2 conversion technologies based on materials that nature has not yet had the opportunity to work with.

“We embrace the high-risk, high-reward nature of this challenge as an opportunity to develop potentially transformative CO2 conversion technologies,” said Entrepreneurial Lead Jason Salfi. “The ambitious strategy outlined in our presentation builds on a solid platform of prior engineering and entrepreneurial experience within our team and access to state-of-the-art experimental facilities at Cornell University.”

Doug’s Take: “While it’s still early, the Cornell team has recently started generating promising data in their lab.  During their tenure in NEXUS, they’ve entered the $20MM Carbon XPRIZE competition and have won an Atkinson Venture Award from Cornell.  They are close to marrying their bioreactor and catalyst technologies into a single prototype. I believe they’ll have a very interesting story to tell come demo day.”

Ducted Turbines International (Clarkson University) – Twice the Energy Capture of Conventional Turbines

The Clarkson University team has been busy this summer turning their research into a company called Ducted Turbines International, as well as ordering parts, designing geometry and building the prototype that will soon be tested at the University of Waterloo in Canada.

“Waterloo has the size we need to place our turbine test rig right inside the wind tunnel,” said DTI product commercialization consultant Paul Pavone. Pavone and Visser describe how the turbine test rig will provide the data needed to validate the Computational Fluid Dynamic (CFD) modeling. The design was first generated on a computer, with the help of two Clarkson Ph.D. students to optimize the duct efficiency and performance of the rotor blades. “We’re looking forward to meeting this milestone soon and revealing preliminary data at NEXUS-NY Demo Day in October,” added Pavone.

Doug’s Take: “The Clarkson team appears to be making great technical progress, and has also developed some exciting partnerships. Paul Pavone joined this team through an introduction from a NEXUS-NY mentor, and they’ve recently started working on some manufacturing opportunities with P1 Industries, a company led by NEXUS-NY advisor, Dave Dussault.  All these little pieces came together through the NEXUS-NY program.”

MIMiC / Rensselaer Polytechnic Institute (CASE) – Modular Indoor MicroClimate

The Rensselaer Polytechnic Institute is working on a technology for localized heating and cooling, which reduces energy consumption and increases occupants comfort. The RPI team, known as MIMiC, plans to go to market initially with a novel modular unit using thermoelectric technologies, which has low energy draw and no moving parts. The technology enables supplemental heating and cooling in a single device without the need to dump heat outside, a huge opportunity to revolutionize portable devices.  

Since the beginning of Phase 2 of the program, we have focused our efforts to strengthen the business case and push forward the functional prototype,” said Berardo Matalucci, PhD Candidate at CASE leading the RPI team. “We understood that there is a clear and compelling business case for novel heating and cooling technologies. However, we need to show a functional prototype to convince our clients that the technology works. We envision a future in which building occupants can set their own preferences without increasing energy consumptions. The NEXUS-NY program has brought us unique help and support to derisk the technology, while accelerating the commercialization process,” he added.

Doug’s Take: “Berardo and his team have made fantastic progress on their prototypes.  This business opportunity carries a lot of technical and market risk, but Berardo and Theodorian continue to make very strong inroads in both areas. They’ve identified a potential pilot customer museum in NYC. Attendees can expect RPI to display a highly refined prototype at Demo Day.”

NanoHydro (University at Buffalo) – Hydrogen Storage & Generation Technology

NanoHydro, winner of the NYSERDA Energy / Sustainability award at the NYS Business Plan Competition, has been engaged in overcoming technical and business milestones during phase 2 of the NEXUS-NY program. At this stage, the team’s biggest milestone has been investigating and validating a process for large scale production. With this research, NanoHydro is looking to move from an expensive gram scale production method, to a kilogram scale production method using an inexpensive precursor. NanoHydro founder Parham Rohani started this research in collaboration with Buffalo Manufacturing Works. NanoHydro is also investigating hydrogen generation performance of their nanomaterial in pellet form.

“We’ve learned several invaluable lessons in this process that will help us in near future,” said Rohani. “In parallel with our lab research, NanoHydro has been deeply engaged in business plan development, customer discovery and market research. We believe that the hydrogen storage market for portable/remote applications is unserved and significant, and that our hydrogen storage/generation technology has great potential to successfully accelerate electricity generation using fuel cells in wide variety of applications,” he added.

Doug’s Take: “Parham knows his hydrogen producing nanomaterials work, the real question is if he can make the material in high volume. That’s why his new partnership with Buffalo Manufacturing Works on scale up is so important. Parham’s technology is being noticed by key customers; he will be presenting at the Defense Innovation Technology Acceleration Challenges in Austin, TX this November. This is a great potential funding and collaboration opportunity for NanoHydro.”

Phase Innovations (SUNY Alfred State) – Innovative New Cooling System

The team from SUNY Alfred State has invented an advanced cooling system that uses water instead of chemical refrigerants to cool buildings. Over the last several months, the researchers have formed a company called Phase Innovations and have diligently worked to test many different materials and designs for the development of their advanced prototype.

“We have identified a new class of materials that has a lot of promise for improved performance and cost,” said Entrepreneurial Lead Steve Wood. “The 2-ton cooling module for this initial customer validation prototype is anticipated to occupy a footprint of about one cubic meter.”

Doug’s Take: “We’re really happy with the progress the Alfred State team has made over the last 8 months.  They have a functional prototype and a pilot customer lined up for when they graduate the NEXUS-NY program. You can’t ask for anything more. They are working on membrane heat pump (MHP) technology, one that has been identified as very promising by the Department of Energy..”

Interested in the NEXUS-NY Proof-of-Concept Center?

Cohort 4 applications for the NEXUS-NY Clean Energy Seed Accelerator open on October 18. Researchers and aspiring entrepreneurs will have until November 11 to submit their ideas. Get a head start on the application process!

9 New NEXUS-NY Research Teams Seek to Bring Energy Technologies to Market

NEXUS-NY Invests in the Brightest Clean Energy Scientists, Engineers and Entrepreneurs

It’s kickoff for nine new research teams joining the NEXUS-NY seed accelerator. From computer scientists to aeronautical engineers, Cohort 3 members have now started their journey to develop clean energy solutions that will accelerate the pace of energy innovation.

NEXUS-NY empowers New York energy researchers with funding, business assistance and market readiness support. Through meaningful proof-of-concept prototypes and customer interaction, over the next 10 months each team will seek to transform their research-derived innovations into companies that solve big problems for real customers.

NEXUS-NY New Energy Magazine 2015Starting with two full days of intensive workshops and presentations, Cohort 3 teams gathered in Rochester to present themselves to each other, hear from past NEXUS-NY participants and begin defining their customers, business problems and solutions.

“It’s exciting to see a bunch of new teams enter the program,” said NEXUS-NY Associate Director Allison Yacci. “This week they’ll dive right into value proposition, customer discovery and market sizing.”

This year’s research teams include one scientific advisor who has already won a prestigious ARPA-E award. Cohort 2016 also encompasses a few universities that have previously not participated in the program before, such as Clarkson University, University at Buffalo and Alfred State College.

“We received applications from almost every major research university in the state,” said NEXUS-NY Founding Executive Director Doug Buerkle. “The quality of talent is outstanding, and you’ll see many participants in Cohort 3 representing universities new to the program.”

Each of these research teams join the NEXUS-NY program with a technical lead and entrepreneurial lead. Here’s a recap of the top researchers from across New York.

Ducted Wind Turbine – Clarkson University

Optimized ducted wind turbine that uses a slotted duct system to augment the wind flow, increasing the efficiency of the turbine rotor.

Ken Visser, Clarkson UniversityTechnical Lead: Ken Visser, Associate Professor of Mechanical and Aeronautical Engineering and Director of the Center of Sustainable Energy Systems at Clarkson University. He completed his PhD at the University of Notre Dame. Following a research appointment at NASA Langley, he worked at the Boeing Aircraft Company, involved in development and design aspects of two aircrafts: the High Speed Civil Transport and the 767-400ER. Other activities include helping in the design of the America’s Cup Team 2000, AmericaOne and working with Fairchild Dornier Aircraft Germany. Visser currenting teaches senior aircraft design and performance courses at Clarkson, and is the AIAA faculty student advisor. His research interests are primarily experimental, focusing on applied aerodynamics and renewable energy concepts, including wind turbine design optimization, drag reduction of ground vehicles and design methodologies for aircraft wing tips.  

EntrepreAmelia Brown, Clarkson University (NEXUS-NY Cohort 3)neurial Lead: Amelia Brown, MBA ‘16 candidate at Clarkson University. Focused on international studies, and having traveled to places such as Northern Ireland and Southern Sudan, Brown is now committed to impacting the world with change. She is also the Fundraising Chair for the Graduate Business Association at Clarkson, and was recently awarded the Ryan Larsen Memorial Prize. This award represents Brown’s philosophical curiosity, creativity, compassion and spiritual inquiry.

Hydrogen Producing Nanomaterials – University at Buffalo

Water-reacted and organic nanomaterials that can split water and produce hydrogen from mobile electricity generation using fuel cells.

Parham Rohani, University at Buffalo (NEXUS-NY Cohort 3)Technical Lead: Parham Rohani, Chemical and Biological Engineering PhD candidate at University at Buffalo. Rohani’s research focuses on synthesis and application of nanoparticles prepared via a laser-induced pyrolysis of gas mixtures. The prepared and post-processed nanoparticles can be used in various applications, including on-demand hydrogen generation from water, which he will explore further as part of NEXUS-NY. Rohani has also worked at Mark Swihart’s Colloidal and Aerosol Nanomaterials Laboratory (CANlab) since 2012, and has three published works.

Naeim Khanjani, University at Buffalo(NEXUS-NY Cohort 3)Entrepreneurial Lead: Naeim Khanjani, MBA ‘17 candidate of the University at Buffalo.   Khanjani’s mission is to influence the world in an encouraging and insightful way. He has already received an Academic Excellence in Research award for “The New Way of Transactions in the Future, Research in New Digital Currencies (BitCoin).” Khanjani is also involved in LeaderCORE, a two-year leadership development program to enhance core management competencies, and he’s an Associate at WealthCFO Payroll and Work Force Management in Buffalo. In 2016, Khnajani received the Entrepreneurship Fellowship Award from the University at Buffalo School of Management.

Economic and Anaerobic Digestion

Increase the biogas generation and organic loading base of anaerobic digesters while simultaneously producing high value end products.

Fred Agyeman, SUNY ESFTechnical Lead: Fred Agyeman, Graduate of the State University of New York College of Environmental Science and Forestry (SUNY-ESF) with a degree in Environmental Resource Engineering and MPS Environmental Management. Agyeman is a USA EPA P3 award winner and SUNY-ESF Graduate Assistant. His published works include research on anaerobic co-digestion of food waste, which he will continue to develop in the 10 months with NEXUS-NY.

Michael Amadori, Full Circle Feed (NEXUS-NY Cohort 3)Entrepreneurial Lead: Michael Amadori, MS in Ecological Engineering from SUNY-ESF. As the Founder and CEO of Full Circle Feed, Amadori’s entrepreneurial efforts involve sustainably produced dog treats that result in happy dogs and a cleaner planet. By recycling unused food from restaurant buffets before it goes to a landfill, Full Circle Feed prevents the release of methane – a potent greenhouse gas with 21 times the global warming potential of carbon dioxide. The process also reduces the environmental impact in treat production by reusing the already prepared food instead of having to grow, harvest, produce and transport new ingredients.

Membrane Heat Pumps – SUNY Alfred State

Membrane heat pump technology that provides latent and sensible cooling in a single device and without hydrofluorocarbon refrigerants.

Jon Owejan, Alfred State (NEXUS-NY Cohort 3)

Technical Lead: Jon P. Owejan, Assistant Professor of Mechanical and Electrical Engineering Technology at SUNY Alfred State. Owejan is a former employee of the General Motors Electrochemical Energy Research Laboratory. He has served as principal investigator for energy research projects sponsored by the US Department of Energy and National Institute of Standards and Technology. In addition to these accomplishments, Owejan has published over 40 papers and holds 29 patents related to novel energy systems. He is also the founder of the Energy Storage Conversion (ESC) lab at Alfred State where his research is focused on energy conversion devices, including membrane heat pumps.

Steven Wood (NEXUS-NY Cohort 3)Entrepreneurial Lead: Steven Wood, Assistant Director of Innovative Services at SUNY RF. In addition to his work with the Research Foundation for SUNY where he provides services to 23 SUNY agriculture, technology and comprehensive campuses, Wood is a Startup Business Consultant and Intellectual Property Attorney. He is also the Co-Founder, and IP Consultant for trakkies, a Netherland-based startup connecting people, places and objects with intelligent systems. He holds an Advanced LL.M in Air and Space Law from the Leiden University Law School, and has received several awards, including the Brookhaven National Laboratory Spotlight Award.

Microbial Fuel Cells – Ǝnergy SP

Ǝnergy SP has invented a novel class 4th generation Microbial Fuel Cells (MFCs) that are compartment-free. These MFCs are completely scalable, require no interphase membranes or catalysts and can be made at significantly lower cost than the current state-of-the-art 3rd generation MFCs.

Jose LozanoTechnical Lead: Jose Lozano, Ph.D. in Biology and Ecological Physiology from Cornell University, a former Scientist at the Boyce Thompson Institute, and currently is Lab Director at Ithaca Area Wastewater Treatment Facility. Lozano has over 20 years of experience, and more than 10 industry publications, including an impact study on Effluent and Lake Phosphorus Results, supporting the significant and positive effect on both the performance of the wastewater plant and on the water quality of southern Cayuga Lake. He has recently received an additional award from the Water Resources Institute to expand a pilot study on environmental threats to Ithaca’s wastewater treatment system. Lozano is in the process of commercializing his Microbial Fuel Cells with Co-Founder Adrian Cosma, in NEXUS-NY’s Cohort 3.

Adrian Cosma, Simon Business School (NEXUS-NY Cohort 3)

Entrepreneurial Lead: Adrian Cosma, has an MBA from the Simon Business School at the University of Rochester. He has more than 8 yrs. of business experience including 5 yrs. on Wall Street, and currently is the Director of Corporate Relations at Simon Business School. He is responsible for developing new, and maintaining existing relationships with alumni and multinational corporations. Cosma was involved in a prior successful start-up and recently he helped co-found the New York Medical Angels (NYMA), an Upstate New York seed stage investor group for life science and healthcare startups.

Indoor Modular Climate Control – Rensselaer Polytechnic Institute

Modular Indoor Micro-Climate Control (MIMiC) Technology is novel modular and scalable building panel systems that delivers localized, switchable, on demand radiant heating or cooling where and when needed. This results in significant energy savings, a healthier indoor environment and increased occupant comfort.

Theodorian Borca-Tasciuc, RPI (NEXUS-NY Cohort 3)Technical Lead: Theodorian Borca-Tasciuc, Professor and Associate Head for Graduate Studies of the Mechanical, Aerospace and Nuclear Engineering (MANE) Department at RPI.  Dr. Borca-Tasciuc holds a PhD in Mechanical Engineering from UCLA. He received the NSF CAREER award (2004), and is an associate editor for the Journal of Nanomaterials. Borca-Tasciuc is also a member of the ASME’s K8 committee on Fundamentals of Heat Transfer and K9 committee on Nanoscale Thermal Transport.

Berardo Matalucci, RPI (NEXUS-NY Cohort 3)Entrepreneurial Lead: Berardo Matalucci, PhD student, Center of Architecture Science and Ecology (CASE) at RPI. Matalucci specializes in user-driven design strategy for the development of next-generation building technologies. He was awarded Europe 40 UNDER 40 2012 Emerging Young Architects and Designers. Prior to joining CASE, he worked in Europe and the United States, and he co-founded ‘echomaterico‘, an internationally awarded collective for design and architecture.

Efficient Photobioreactor for Algae-Based Fuel & Semiconductor Nanomaterials for Capturing Conversion – Cornell University

New for 2016, NEXUS-NY is piloting a way for university researchers to test the commercial potential of their research without fully participating in the program’s rigorous process. Instead, the selected researchers will spend 1-2 hours per week providing scientific advisory support to entrepreneurs recruited by NEXUS-NY. The first year pilot resulted in a combined team, which is looking at two technologies from Cornell University separately and in combination.

The first technology is high-density photobioreactor which optimizes light and Co2 delivery for efficient generation of algae. This technology delivers sunlight efficiently through low-cost, plastic, light-guiding sheets to increase efficiency and decrease water use compared to conventional algae reactors.

The second involves a hybrid organic/inorganic nanofluid with the combined capabilities of CO2 capture and photocatalytic CO2 reduction.

David Erickson, Cornell UniversityScientific Advisor: David Erickson, Associate Professor in the Sibley School of Mechanical and Aerospace Engineering at Cornell University. His research focuses on mobile and global health technology, microfluidics, photonics and nanotechnology. Erickson’s research has been funded by grants from NSF, NIH, ARPA-E, ONR, DOE and DARPA. He has also co-founded 3 companies commercializing smartphone enabled medical diagnostics, global health technologies and high-throughput nanoparticle analysis instrumentation. Among his several awards, in 2011 Erickson received the Early Career Award for Scientist and Engineers (PECASE) by President Obama. He holds a Phd from the University of Toronto.

Tobias Hanrath, Cornell UniversityScientific Advisor: Tobias Hanrath, Associate Professor of Chemical and Biomolecular Engineer at Cornell University. Hanrath received a PhD from the University of Texas at Austin, and has served as a Postdoctoral Research Fellow for MIT, TU Eindhoven and The Netherlands. His research interests include the fundamental study of optoelectronic properties of semiconductor nanocrystals. Hanrath has also received several awards including the Ben Streetman Prize for Outstanding Research in Electronics and the Faculty Early Career Development Award by the National Science Foundation.

Jason SalfiEntrepreneurial Lead: Jason Salfi, Business Development Executive at McDonough Innovation. Salfi was the founder and prior owner of Comets Skateboards, and an Entrepreneur in Residence for NYSERDA and High Tech Rochester. He holds two BS degrees from Cornell University in Natural Resource Management for Biology and Policy.

Clayton PoppeEntrepreneurial Lead: Clayton Poppe, Chief Technology Officer and VP of Engineering at e2e Materials. Poppe is an engineering and technical management professional specializing in new technology development and production scale-up. He received an SM in Engineering Systems and an MBA from MIT. Poppe’s also holds two patents in the areas of composite panels and biodegradable resin composites

Graphene Lithium Ion Batteries – Rochester Institute of Technology

Technology incorporates carbon nanotubes and lithium ion batteries to improve their performance.

Raffaelle Ryne, RIT (NEXUS-NY Cohort 3)Technical Lead: Ryne Raffaelle, VP Research and Associate Provost, Professor at RIT. Dr. Rafaelle holds a PhD in physics from the University of Missouri-Rolla, and he’s the Managing Editor of Progress in Photovoltaics. With more than 20 years of experience, Raffaelle is the former Director of National Center for Photovoltaics in the U.S Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL), the Academic Director for the Golisano Institute for Sustainability and Director of the NanoPower Research Laboratory at RIT in New York. He has authored or co-authored more than 100 refereed publications and books.

Brad Sparks, RIT (NEXUS-NY Cohort 3)Entrepreneurial Lead: Brad Sparks, Entrepreneur in Residence at RIT. Sparks leads business activities to determine new technology commercial viability for Venture Creations, RIT’s new business incubator. He is also the President of Sparks Consulting, a business and personal financial strategy consulting service. Prior to this, Sparks worked for Delphi and General Motors. He holds an MBA in General Management from the Harvard Business School. This is the third time Sparks has participated in the NEXUS-NY program.

Learning Center Controls – Binghamton University

Robust autonomous learning solutions that improve energy efficiency and effective operations in systems within highly complex, uncertain and dynamic environments. In Smart Energy domains such systems include: smart grids, smart buildings, wind turbine control systems, and combined heat and power control systems.

Robert Wright, Binghamton University (NEXUS-NY Cohort 3)

Technical Lead: Robert Wright, Computer Scientist, Air Force Research Laboratory (AFRL). Wright is the co-lead for Autonomy Community of Interest, Machine Perception Reasoning and Intelligence technical challenge area. In this role he provides analysis for the Office of the Secretary of Defense for the DOD’s portfolio in Autonomy investments. He is also an in-house Research Scientist for AFRL, responsible for initiating and executing several research efforts in machine learning, artificial intelligence and autonomous systems. He holds a PhD in Computer Science from Binghamton University, and has published more than a dozen works.

Lei Yu, Binghamton University (NEXUS-NY Cohort 3)Entrepreneurial Lead: Lei Yu, Associate Professor, Department of Computer Science, Thomas J. Watson School of Engineering and Applied Science at Binghamton University. Yu received a PhD in Computer Science from the Department of Computer Science and Engineering at Arizona State University. His research interests include data mining, machine learning and bioinformatics. Yu’s research publications have been cited by other researchers more than 4,000 times. He has served on the program committees of a number of leading conferences in machine learning and data mining.

Funded by the New York State Energy Research and Development Authority (NYSERDA), and administered by High Tech Rochester, each of these research teams will now work with NEXUS-NY staff and mentors to accelerate the commercialization of their early-stage, clean-energy technologies.

Sign up for NEXUS-NY newsletters to receive updates on their progress throughout the year, including invitations to Demo Days in New York City and Rochester, NY.